Gå direkt till huvudinnehåll
Researchdata.se

Dataset concerning the vibration signals from wind turbines in northern Sweden

Dataset of A dictionary learning approach to monitoring of wind turbine drivetrain bearings
https://doi.org/10.5878/bcmv-wq08

In the manuscript, we investigate condition monitoring methods based on unsupervised dictionary learning. The dataset includes the raw time-domain vibration signals from six turbines within the same wind farm (near geographical location). All the wind turbines are of the same type and possess a three-stage gearbox. All measurement data corresponds to the axial direction of an accelerometer mounted on the housing of the output shaft bearing of each turbine. The sampling rate is 12.8 kilosamples/second and each signal segment is 1.28 seconds long (16384 samples). There are six files, which contains the vibration data from each of the six wind turbines. Within each file, each row corresponds to a different measurement. Furthermore, the first column represents the time expressed in years since the vibration data started to be recorded. The second column is the speed expressed in cycles per minute. The remaining columns are the vibration signal time series expressed in Gs. Datasetet har ursprungligen publicerats i DiVA och flyttades över till SND 2024.

Ladda ner 6 filer (4.84 GiB)

Citering och åtkomst

Metod och utfall

Administrativ information

Ämnesområde och nyckelord

Relationer

Publikationer

Metadata

Version 1
doris
Luleå tekniska universitet