A Multi-Parametric and High-Throughput Platform for Host-Virus Binding Screens
https://doi.org/10.17044/SCILIFELAB.20517336
General information
This item containst data sets for Schlegel et al, Nano Letters, 2023.
DOI: https://doi.org/10.1021/acs.nanolett.2c04884Öppnas i en ny tabb
It contains confocal images, lattice light sheet images, flow cytometry data, compiled data as excle sheet and raw figure files.
Abstract
Speed is key during infectious disease outbreaks. It
is essential, for example, to identify critical host binding factors to
pathogens as fast as possible. The complexity of host plasma
membrane is often a limiting factor hindering fast and accurate
determination of host binding factors as well as high-throughput
screening for neutralizing antimicrobial drug targets. Here, we
describe a multiparametric and high-throughput platform tackling
this bottleneck and enabling fast screens for host binding factors as
well as new antiviral drug targets. The sensitivity and robustness of
our platform were validated by blocking SARS-CoV-2 particles
with nanobodies and IgGs from human serum samples.
Data usage
Researchers are welcome to use the data contained in the dataset for any projects. Please cite this item upon use or when published. We encourage reuse using the same CC BY 4.0 License.
Data Content
Excel files for graphs
Microscopy Images
Flow cytometry data
Software to open files:
.csv: Fiji (https://imagej.net/software/fiji/downloadsÖppnas i en ny tabb) or Microsoft Excel
.xlsx: Microsoft Excel
.tif, .lsm: Fiji (https://imagej.net/software/fiji/downloadsÖppnas i en ny tabb)
.pzfx: GraphPad Prism
.svg: Inkscape (https://inkscape.orgÖppnas i en ny tabb)
.fcs: FCS Express
.pdf: AdobeAcrobat or Mozilla Firefox
.ijm: Fiji (https://imagej.net/software/fiji/downloadsÖppnas i en ny tabb)
Gå till källa för data
Öppnas i en ny tabbhttps://doi.org/10.17044/SCILIFELAB.20517336
Citering och åtkomst
Citering och åtkomst
Administrativ information
Administrativ information
Ämnesområde och nyckelord
Ämnesområde och nyckelord
Relationer
Relationer
Metadata
Metadata

Karolinska Institutet