Skip to main content
Researchdata.se

SCANIA Component X Dataset: A Real-World Multivariate Time Series Dataset for Predictive Maintenance

https://doi.org/10.5878/bnh5-ka77

This data is a real-world, multivariate time series dataset collected from an anonymized engine component (called Component X) of a fleet of trucks from SCANIA, Sweden. This dataset includes diverse variables capturing detailed operational data, repair records, and specifications of trucks while maintaining confidentiality by anonymization. It is well-suited for a range of machine learning applications, such as classification, regression, survival analysis, and anomaly detection, particularly when applied to predictive maintenance scenarios. The large population size and variety of features in the format of histograms and numerical counters, along with the inclusion of temporal information, make this real-world dataset unique in the field. The objective of releasing this dataset is to give a broad range of researchers the possibility of working with real-world data from a well-known international company and introduce a standard benchmark to the predictive maintenance field, fostering reproducible research.

Download 11 files (1.54 GiB)

Citation and access

Method and outcome

Data collection Physical measurements and tests

Administrative information

Topic and keywords

Publications

Contact

Metadata

Versions

doris
Scania CV AB